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We consider a biological system where several families of cells, differentiated by their
activity state and reaction to external factors acting on the system, are present. The
dynamics of cell populations is modelled by a compartmental approach, starting from
the case of finite number of classes and passing to the continuum range of the vari-
ables. In a frame of special attention devoted to the mass balance, the evolution of the
system is described by the variation of mass of each species. The well-posedness of the
mathematical models is proved.
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1. Introduction

Modelling the dynamics of cellular proliferation is a crucial step in studying tumour

growth and the possibility of controlling its speed. In the macroscopic description

of the formation of solid tumours, even at their early avascular state, it appears

that the model should (i) incorporate a correct mass balance including all the

molecules that take part in the synthesis of the different cellular components during

the cycle leading to mitosis, as well as in the metabolic processes, (ii) take into

account density variations occurring during the processes, thus inducing dilata-

tion or shrinkage, (iii) postulate suitable easily verifiable laws relating mechanical

quantities.

The three tasks sketched above are far from being trivial and many efforts have

been made in recent years.1–4 Although symmetry assumptions simplify discussion

to a large extent, the complexity introduced in order to take into account (ii) and

(iii) can result in paying less attention to point (i) and to assume — more or

less implicitly — that the substances used by the cells to duplicate themselves are
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always “abundant” and do not enter the mass balance significantly. Instead, our

point of view is to depict the formation of a new cell as the passage of a given mass

of molecules to a higher degree of organization.

In order to isolate difficulties, we decided to focus our attention to point (i) and

to disregard, throughout the paper, space variation of the relevant quantities. The

resulting model (rather, the resulting models) will be a starting point for future

research in which more complex aspects will be encompassed.

It can be noted that the models we will discuss here can be seen as a genera-

lization of models for the dynamics of homogeneous age-structured populations5,6

and that the continuous model presented at the end of Sec. 3 is in the spirit of the

Boltzmann-like approach adopted e.g. in Refs. 7 and 8.

The scheme of the paper is the following: in Sec. 2 we introduce a basic com-

partmental model in which the cells are divided in N different groups according to

their biological activity. Different possible assumptions are presented to describe

the dynamics of variations of the distribution among the N groups. In Sec. 3

cellular activity is considered to be a continuous variable. Models are presented

and discussed in strict analogy with Sec. 2. Sections 4 and 5 are finally devoted to

the proofs of well-posedness of the models.

2. Compartmental Models

According to the arguments above, the mass entering the general mass balance can

be classified in three main types:

(i) material organized and forming cells: its mass will be denoted by m(t),

(ii) molecules that are available to the living cells either to feed their metabolism

or to provide with the necessary elements for mitosis: their total mass will be

denoted by p(t),

(iii) molecules that cannot be used to form new cells nor to be “burned” in the

metabolic processes. They are simply waste. Their total mass will be denoted

by q(t).

Within each of the three types above, suitable subclasses could be identified. From

the point of view of the resulting mathematical model, introducing Np subclasses

in the second group and/or Nq subclasses in the third group is irrelevant and

introduces only formal complications that we will avoid in order to stress the main

features of the problem. On the other hand, it is often biologically relevant to classify

living cells according to their “biologic activity”, which is essentially reflected in

their proliferating capacity, death rate, metabolic balance: therefore fully prolifer-

ating cells will be distinguished from quiescent, pre-necrotic, etc. We will assume

that N groups of cells can be identified and the total mass of the cells in each group

will be denoted by m1(t),m2(t), . . . ,mN (t), so that

m(t) =
N∑
i=1

mi(t) (2.1)
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and hence, if fi(t) = mi(t)/m(t) is the fraction of mass in the ith class, it is

N∑
i=1

fi(t) = 1 . (2.2)

Let us write the mass balance in the three types assuming that the duration of the

cellular cycle is negligible w.r.t. the time scale of the phenomenon

dm

dt
=

N∑
i=1

mi(Fi − µi) , (2.3)

dp

dt
=

N∑
i=1

mi(αµi − Fi −Gi) +Q , (2.4)

dq

dt
=

N∑
i=1

mi((1− α)µi +Gi) , (2.5)

where Fi and µi represent respectively the proliferation and death rate in the ith

cellular state, α, 0 ≤ α ≤ 1, is the fractiona of the mass of dead cells which can be

used in metabolism and replication (catabolism is considered to be immediate), Gi
is the rate at which molecules of the class p are burned by the cells of the ith state

and transformed in waste, and Q is external supply rate (oxygen, nutrients, etc.).

Quantities µi, Fi, Gi will certainly depend on p and possibly on q (“catabolitic

poisoning”).

We can also assume that they depend on another quantity γ(t) representing

external inputs such as the presence of drugs or other substances that do not

enter the mass balance. From a conceptual point of view there is no difficulty

in considering γ(t) as an array of quantities γ1(t), . . . , γs(t).

Remark 1. Obviously, if Q ≡ 0, the material system is closed and summing up

(2.3)–(2.5) we find that M = m(t) + p(t) + q(t) is constant. On the other hand,

since the model is spatially homogeneous, it is reasonable to assume that whenever

interactions with the outer environment exist, they can be described by a distributed

source term Q(t) so that dM
dt = Q(t). This is in the same spirit of the mechanism

smoothing the spatial dishomogeneity we have introduced.

Remark 2. We note that the structure of the dynamical system does not change

if γ = (γ1, . . . , γs) is not assigned as a function of time but it is a given function of

mi, p, q, t or even if its time derivative is a prescribed function of the same arguments

so that γ becomes itself one of the state variables.

We also remark that the equations of the model should incorporate time delays

whenever the dynamics is such that cellular cycle and/or metabolic and catabolic

processes have durations that are not negligible with respect to the time scale of

aIn principle to each ith state we could associate an αi; complication is just formal.
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the experiment. This remark applies to the models discussed in this section as well

as to the continuous model of Sec. 3.

Next step is to describe the evolution within the ith compartment of the system.

We will consider two different points of view: on one hand the mass fractions

fi, i = 1, . . . , N can be assumed to be prescribed or related to some equilibrium

configuration (Sec. 2.1); on the other hand the balance in each compartment can be

formulated by taking into account the biological and chemical processes occurring

in each class and of the mass transition from a class to another (Sec. 2.2).

2.1. Prescribed equilibrium distribution

A simple assumption consists in prescribing the mass fractions {f1, f2, . . . , fN} as

given functions of (time and of) γ(t)

fi(t) = f̄i(γ(t), t) , i = 1, 2, . . . , N . (2.6)

Hence we write in (2.3)–(2.5)

mi(t) = m(t)f̄i(γ(t), t) , (2.7)

and we solve system (2.3)–(2.5) in the three unknown functions m(t), p(t), q(t).

A relatively more sophisticated approach, within the same general philosophy,

would consist of assigning an equilibrium distribution {f̄1, f̄2, . . . , f̄N} for any given

γ and assuming that each mass fraction fi relaxes to equilibrium with a given time

τi constant

dfi

dt
=

1

τi
(fi(t)− f̄i(γ)) , i = 1, . . . , N . (2.8)

Thus, the phenomenon is described by (2.3)–(2.5) and (2.8), once γ is prescribed

together with the kinetic functions and data.

Equation (2.8) can be generalized to the following situation:

dfi

dt
= Fi(fi(t), γ(t), t) , (2.9)

where Fi are functions (or even functionals) of their arguments.

2.2. Prescribed transition dynamics

A different approach consists of studying the transitions of cells from one com-

partment to another as it is usual in compartmental systems. Thus, one writes for

i = 1, 2, . . . , N

dmi

dt
= νi

N∑
k=1

Fkmk − µimi +
N∑
k=1

(Pk→i − Pi→k) , (2.10)
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where (ν1, ν2, . . . , νN ) is the distribution of the newborn cells in the compartments

and Pj→l is the rate of cellular mass transfer from compartment j to compartment

l. Obviously, it must be

N∑
i=1

νi = 1 . (2.11)

We remark that summing up Eqs. (2.9) with respect to i leads to the global balance

(2.3), as we expect.

Concerning Pj→l, it is clear that it has to go to zero with mj and hence its

simplest form will be

Pj→l = λj→lmj . (2.12)

Moreover, it is usual to assume that transfer is possible only from and to adjacent

compartments, i.e. λj→l = 0 if |j − l| 6= 1 and we use the following notation

λk→k+1 = vk , k = 1, . . . , N − 1 , (2.13)

λk→k−1 = gk , k = 1, . . .N . (2.14)

If we define

vN = 0 , g1 = 0 , (2.15)

then (2.13) can be written for any k = 1, . . . , N and (2.10) becomes

dmi

dt
= νi

N∑
k+1

Fkmk − µimi + vi−1mi−1 − vimi + gi+1mi+1 − gimi , (2.16)

hold for any i = 1, . . . , N , if we set

v0 = 0 , gN+1 = 0 . (2.17)

We conclude this section by noting that transfer coefficients vj and gj (as well as

mortality fraction νj) can be assigned as functions of γ(t).

Of course, (2.3) is a consequence of the differential Eqs. (2.10).

3. Models with Continuous Distribution of Cellular Activity

As is usually done when the number of levels of cellular activity that has to be

taken into account is large enough, we will introduce an index of cellular activity a,

ranging from 0 to 1 and we will denote by ϕ(a, t) the partition function of cellular

mass, such that ∫ 1

0

ϕ(a, t)da = 1 , ∀ t ≥ 0 . (3.1)

The mass of cells with activity state between a1 and a2, 0 ≤ a1 < a2 ≤ 1, is

m(t)
∫ a2

a1
ϕ(η, t)dη.
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It is easily found that system (2.3)–(2.5) is replaced by

dm

dt
= m(t)

∫ 1

0

ϕ(a, t)(F (a, . . .)− µ(a, . . .))da , (3.2)

dp

dt
= m(t)

∫ 1

0

ϕ(a, t)(αµ(a, . . .)− F (a, . . .)−G(a, . . .))da+Q(t) , (3.3)

dq

dt
= m(t)

∫ 1

0

ϕ(a, t)((1− α)µ(a, . . .) +G(a, . . .))da , (3.4)

where the dots in the arguments denote the possible dependence of the kinetic

parameters on the state variable p, q, m and on t and γ(t) (as pointed out in

Remark 2.1 γ — or γ1, γ2, . . . , γs — becomes a state variable if it is not a given

function but its evolution in terms of the other variables is prescribed).

The closure of the system (3.2)–(3.4) requires some additional information on

ϕ(a, t). As in the previous section the simplest situation occurs when it is possible to

assume that an equilibrium partition between the activity states exists for any given

external situation γ(t) and that this partition is reached either instantaneously or

through a relaxation kinetics. The two assumptions above correspond to

ϕ(a, t) = ϕ̄(a, γ(t), t) (3.5)

or

∂ϕ

∂t
=

1

τ
(ϕ(a, t) − ϕ̄(a, γ(t), t)) , (3.6)

or, more generally, ∂ϕ∂t = F(ϕ, γ, t)

On the other hand, it may be more appropriate to adopt the point of view of

Sec. 2.2, i.e. to prescribe the internal transition between different states. In this case,

the evolution equation for ϕ is written in analogy with Eq. (2.9) (with assumption

(2.10)):

∂

∂t
(m(t)ϕ(a, t))

= ν(a, . . .)m(t)

∫ 1

0

F (η, . . .)ϕ(η, t)dη −m(t)ϕ(a, t)µ(a, . . .) +m(t)

×
(∫ 1

0

ϕ(η, t)τ(η, a, . . .)dη −
∫ 1

0

ϕ(a, t)τ(a, η, . . .)dη

)
, (3.7)

where we denoted the transfer function (which replaces Pl→j) by τ(a, η, . . .). The

newborn cells distribution function ν must verify (compare with (2.11))∫ 1

0

ν(a, . . .)da = 1 . (3.8)
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On the other hand, if one admits transfers only by contiguous states, then instead

of the “scattering” term (last term in (3.7)) one has a “streaming” term of the form

(see (2.12) for comparison)

m(t)

(
∂

∂a
ϕ(a, t)g(a, . . .)− ∂

∂a
ϕ(a, t)v(a, . . .)

)
, (3.9)

where we denoted the transfer functions by g and v to stress the analogy with the

discrete case of Sec. 2.2. Of course we can rewrite the term (3.9) as

m(t)
∂

∂a
ϕ(a, t)Γ(a, . . .) , (3.10)

with the obvious constraints (corresponding to (2.15) and (2.17) in the discrete

case)

Γ(0, . . .) = Γ(1, . . .) = 0 . (3.11)

We conclude this section by remarking that integrating (3.7) with respect to a

in (0,1) (either with the scattering term or with the streaming term (3.10)) and

taking into account (3.1), (3.8) and (3.11), we find again the mass balance (3.2).

Sections 4 and 5 will be devoted to proving the well-posedness of models

presented and discussed in Sec. 2 and 3 respectively.

4. Compartmental Models: Qualitative Analysis of the Initial

Value Problem

A simple case we can imagine for system (2.3)–(2.5), corresponds to assuming that

N = 1 (hence f1 ≡ 1 and the cells are not distiguished from their activity state):

dm

dt
= m(F (p, q, γ(t), t)− µ(p, q, γ(t), t)) , (4.1)

dp

dt
= m(αµ(p, q, γ(t), t)− F (p, q, γ(t), t)−G(p, q, γ(t), t)) +Q(t) , (4.2)

dq

dt
= m((1− α)µ(p, q, γ(t), t) +G(p, q, γ(t), t)) . (4.3)

In this case, the mathematical problem consists of solving the system of O.D.E.s

(4.1)–(4.3) where the unknown functions are m(t), p(t) and q(t), with the initial

conditions

m(0) = m0 , p(0) = p0 , q(0) = q0 . (4.4)

It is reasonable to assume that the given functions on the R.H.S. of (4.1)–(4.3) are

smooth. If, for instance, Q, γ are continuous and F , G, µ are Lipschitz continuous

w.r.t. p, q (uniformly for t ∈ [0,+∞)) and they are continuous functions w.r.t. t

(explicitly and through γ(t)), existence and uniqueness of a global solution to the

system is guaranteed.
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The solution m, p, q must verify, owing to the physical meaning of the quantities

m(t) ≥ 0 , p(t) ≥ 0 , q(t) ≥ 0 . (4.5)

The behaviour of the solution (m, p, q) of (4.1)–(4.4) depends obviously on the

properties of the given functions F ≥ 0, G ≥ 0, µ ≥ 0, Q ≥ 0 and γ. As a general

feature, we easily deduce that the mass m+ p is limited by

m(t) + p(t) ≤ m0 + p0 +

∫ t

0

Q(τ)dτ . (4.6)

We also remark that m ≡ 0, p ≡ p0, q ≡ q0 corresponds to a stationary solution of

the problem, provided that Q ≡ 0. Moreover, if we require, as it is natural,{
F (0, q, γ(t), t) = 0 for q ≥ 0, t ≥ 0 ,

G(0, q, γ(t), t) = 0 for q ≥ 0, t ≥ 0 ,
(4.7)

then we see that the solution verifies (4.5).

In order to describe an even simpler situation, let us consider the autonomous

case, with the aim of making explicit some properties of the solution. Equations (4.1)

and (4.2) reduce to (dropping also the dependence on q of the given functions and

taking Q as a non-negative constant):

dm

dt
= m(F (p)− µ(p)) , (4.8)

dp

dt
= m(αµ(p) − F (p)−G(p)) +Q . (4.9)

The waste function q can be calculated a posteriori by q(t) = m0 +p0 + q0−m(t)−
p(t) +Qt.

According to a natural situation, we may think of F and G as increasing func-

tions w.r.t. p, while µ as decreasing function of p. In this case, there is no difficulty

in displaying the solution on a (m, p)-phase plane. Set T the triangle on the phase

plane defined by m ≥ 0, p ≥ 0, m+ p ≤M0. One easily realizes that

1. if Q = 0, then limt→+∞m(t) = 0 and p tends to a value p∞, 0 < p∞ < M0 =

m0 + p0 + q0. No further stationary states are possible. The shapes of the orbits

depend on the properties of F , G and µ. Essentially, three situations may occur:

(a) F (p) < µ(p) and H(p) ≡ αµ(p) − F (p) −G(p) > 0 for 0 ≤ p ≤ M0: in this

case, T is invariant, each point (0, p), 0 ≤ 0 ≤M0 is a stationary orbit and

along any other orbit m decreases (tending to zero) and p increases;

(b) F (p) < µ(p) and it exists p1, 0 < p1 < M0 such that H(p1) = 0: the same

situation, apart from the fact that p = p1 is an orbit and p decreases along

the orbits for p1 < p < M0;

(c) p2 exists, 0 < p2 < M0 such that F (p2) = µ(p2): in this case there also

exists a positive value p1 < p2 with the property stated in (b); the situation

is sketched in Fig. 1, where F ,G and µ have linear profiles,M1 = 1, p1 = 0.38

and p2 = 0.46;
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Fig. 1. Orbits on the (m, p) phase plane, case 1(c).
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Fig. 2. Orbits on the (m, p) phase plane, case 2.

2. if Q 6≡ 0, then stationary solutions do not correspond necessarily to m = 0;

moreover, T is no longer invariant. The qualitative behaviour of the solution

goes along again the cases 1(a)–1(c). In Fig. 2 we sketched the case (c) where

the singular point m = −Q/H(p2), p = p2 is asymptotically stable.

We pass now to discuss the case N > 1. As we already noticed, if assumption

(2.6) (or (2.8)) is assumed to hold, then the mathematical problem is essentially

the same as in the case N = 1, since we have to solve (2.3)–(2.5) with mi given by

(2.7), in case of assumption (2.6), or by m(t)fi(t) with fi(t) given by

fi(t) = fi(0)et/τi − 1

τi

∫ t

0

e(t−θ)/τi f̄i(γ(θ))dθ (4.10)

in the case of assumption (2.8).

On the other hand, if system (2.3)–(2.5) is coupled with Eq. (2.9), the mathe-

matical problem consists of solving N + 2 O.D.E.s (namely (2.4), (2.5) and (2.9))
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together with the initial conditions (4.4) and mi(0) = mi,0, i = 1, . . . , N (as we

already observed, (2.3) is nothing but the sum of Eqs. (2.10)).

Again, the well-posedness is guaranteed under standard assumptions on the

R.H.S. of the equations of the dynamical system.

5. Continuous Distribution of Cellular Activity:

The Mathematical Problem

We are going now to consider the problem (3.2)–(3.4) which describes the con-

tinuous distribution of the index a ∈ [0, 1], introduced in Sec. 3.

If we adopt the point of view (3.5) or (3.6), the distribution function ϕ(a, t)

can be calculated once the external factors γ are known, as we already observed in

Sec. 2. In case of assumption (3.6), the solution (4.10) is replaced by

ϕ(t) = ϕ(0)et/τ − 1

τ

∫ t

0

e(t−θ)/τ ϕ̄(γ(θ))dθ . (5.1)

Note that (3.1) holds for any t ≥ 0. Once ϕ(a, t) is known, we can solve ths system

of O.D.E.s (3.2)–(3.4) in order to find m, p and q.

On the contrary, if we prescribe the internal transitions by means of (3.7)

(possibly with the streaming term (3.10) replacing scattering), we must consider

(3.2)–(3.4) and (3.7) simultaneously and the problem consists in integral-differential

equations. We will discuss such a system, which we write again in the following

form:

dm

dt
= m(t)

∫ 1

0

ϕ(a, t)(F (a, p, t) − µ(a, p, t))da , (5.2)

dp

dt
= m(t)

∫ 1

0

ϕ(a, t)(αµ(a, p, t) − F (a, p, t)

−G(a, p, t))da+Q(t) , (5.3)

∂

∂t
ϕ(a, t) =

∫ 1

0

(ν(a, p, t)F (η, p, t) + τ(η, a, p, t))ϕ(η, t)dη

−
(
µ(a, t) +

∫ 1

0

τ(a, η, p, t)dη

)
ϕ(a, t)

+ϕ(a, t)

∫ 1

0

(µ(η, p, t)− F (η, p, t))ϕ(η, t)dη . (5.4)

For the sake of simplicity (but without altering the essence of the mathematical

problem) we neglected the dependence of the given functions F , G, µ and ν on q.

Moreover, assuming that the external factors γ(t) are assigned, we indicated that

the same functions depend on t (possibly, through γ(t)).
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Equation (5.4) comes from (3.7), taking also into account (3.1) and replacing

ṁ by (3.2).

The initial conditions and the constraints that the solution (m, p, ϕ) must verify

are:

m(0) = m0 ≥ 0 , p(0) = p0 ≥ 0 , (5.5)

ϕ(a, 0) = ϕ0(a) , 0 ≤ a ≤ 1 , (5.6)

m(t) ≥ 0 , p(t) ≥ 0 , t ≥ 0 , (5.7)

ϕ(a, t) ≥ 0 ,

∫ 1

0

ϕ(a, t)da = 1 . (5.8)

Let T be a fixed positive time. We assume that the given functions have the following

properties:

1. The functions F ≥ 0, G ≥ 0, µ ≥ 0, ν ≥ 0, τ ≥ 0 are continuous for a, η ∈ [0, 1],

p ≥ 0, t ∈ [0, T ] and Lipschitz continuous w.r.t. p, uniformly in t ∈ [0, T ];

moreover, ν verifies (3.8); Q(t) is a continuous function for t ∈ [0, T ];

2. (compare with (4.7))

F (a, 0, t) = 0 , G(a, 0, t) = 0 for a ∈ [0, 1], t ∈ [0, T ] . (5.9)

3. Function ϕ0(a) in (5.6) is such that

ϕ0(a) ≥ 0 for 0 ≤ a ≤ 1 ,

∫ 1

0

ϕ0(a)da = 1 . (5.10)

We start by remarking that, if a non-negative solution (m, p) is known to exist,

then, arguing as in (4.6)

0 ≤ m(t), p(t) ≤M1 +

∫ t

0

Q(τ)dτ , (5.11)

where M1 is the given initial mass m0 + p0.

Once a pair (m, p) has been fixed, the structure of (5.4) is the following:

∂

∂t
ϕ(a, t) =

∫ 1

0

K1(a, η, t)ϕ(η, t)dη −K2(a, t)ϕ(a, t)

+ϕ(a, t)

∫ 1

0

K3(η, t)ϕ(η, t)dη (5.12)

with

K1(a, η, t) = ν(a, p(t))F (η, p(t), t) + τ(η, a, p(t), t) ≥ 0 , (5.13)

K2(a, t) =

∫ 1

0

τ(a, η, p(t), t)dη + µ(a, p(t), t) ≥ 0 , (5.14)

K3(η, t) = µ(η, p(t), t)− F (η, p(t), t) . (5.15)
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Existence and uniqueness of the solution ϕ(a, t) of (5.16) with the initial datum

(5.5) can be proved by semigroups theory arguments as follows.

Consider first the evolution equation ϕt = A(t)ϕ in the Banach space of

integrable functions (w.r.t. a) L1(0, 1), where the operator A(t) is defined as

A(t)ϕ = −K2ϕ, t ∈ [0, T ]. Owing to the assumptions stated in point 1 above, each

operator A(t), t ∈ [0, T ] is the infinitesimal generator of a dissipative semigroup,

by virtue of the Lumer–Phillips theorem (see e.g. Ref. 9). Hence, {A(t)}t∈[0,T ] is

a stable family of infinitesimal generators of continuous semigroups St(s), s ≥ 0,

satisfying ‖St‖ ≤ 1. We consider now the equation ϕt = A(t)ϕ+B(t)ϕ, where B(t)

is the Fredholm operator B(t)ϕ =
∫ 1

0 K1(a, η, t)ϕdη, which is bounded by

‖B(t)‖ ≤ K̄1 = sup
0≤a,η≤1,0≤t≤T

K1(a, η, t) <∞ , for all t ∈ [0, T ] .

Making use of the linear perturbation Theorem 2.3 of Ref. 10, we conclude

that {A(t)+B(t)}t∈[0,T ] is a stable family of infinitesimal generators with stability

constants 1 and K̄1.

We discuss at this point the complete Eq. (5.4) which we write in the form

ϕt = A(t)ϕ +B(t)ϕ+ f(t, ϕ) , ϕ(0) = ϕ0 , (5.16)

where the nonlinear term f is given by ϕ
∫ 1

0 K3ϕdη.

We are in a position to apply Theorem 1.7 of Ref. 10, which provides us with

a classical solution of the initial value problem (5.16). Actually, for any ϕ ∈ L1 f

is continuous w.r.t. t and uniformly Lipschitz continuous in ϕ with respect to the

graph norm ‖ϕ‖+‖(A+B)ϕ‖; hence we get a unique solution ϕ ∈ L1(0, 1) w.r.t. a

and C1(0, T ) for t ∈ (0, T ) of problem (5.16) for any ϕ0 ∈ L1(0, 1).

We check now that the solution ϕ(a, t) verifies properties (5.8). Indeed, by

integrating (5.4) w.r.t. a ∈ (0, 1) one finds (recall (3.8))

d

dt
β(t) = β(t)

∫ 1

0

K3(η, t)ϕ(η, t)dη , (5.17)

where β(t) =
∫ 1

0 (1 − ϕ(a, t))da. Since β(0) = 0 (from (5.10)), we conclude that

β(t) ≡ 0, hence
∫ 1

0
ϕ(a, t)da = 1, for all t ∈ [0, T ].

We prove now that ϕ(a, t) ≥ 0. Consider the solution ψ of the evolution problem

ψt =

∫ 1

0

K1(a, η, t)ψ(η, t)dη −K2(a, t)ψ(a, t) , ψ(a, 0) = ϕ0(a) . (5.18)

It is immediate that ψ(a, t) ≥ 0, t ≥ 0 whenever ψ(a, 0) ≥ 0, (the existence of the

solution is guaranteed by the same theorems we used above). On the other hand,

by comparing (5.18) with (5.4), we see that ϕ ≥ ψ, since K1 ≥ 0.

We saw that for any assigned pair (m, p) a unique distribution function ϕ can

be found. On the other hand, for any given ϕ a pair (m, p) can be calculated by

means of (5.2), (5.3).
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Such as iterative scheme defines a contractive map on (m, p) in the sense we

are going to show. We call Q̄ = supt∈[0,T ]Q(t) ≥ 0 and define the Banach space of

continuous functions

B = {(m, p) |m, p ∈ C0[0, T ], 0 ≤ m(t), p(t) ≤M1 + Q̄} , (5.19)

endowed with the norm ‖(m, p)‖ = sup0≤t≤T (m(t) + p(t)), and the operator F

F(m, p) = (m̃, p̃) , (5.20)

where (m̃, p̃) is the solution of the integral system (see (5.2) and (5.3))

m̃ = m0H1(p̃, p, τ)dτ +

∫ t

0

Q(τ)dτ , (5.21)

p̃ = p0 +

∫ t

0

m(τ)H2(p̃, p, τ)dτ +

∫ t

0

Q(τ)dτ , (5.22)

with

H1(p̃, p, t) =

∫ 1

0

(F (a, p̃, t)− µ(a, p̃, t))ϕ(a, t)da ,

H2(p̃, p, t) =

∫ 1

0

(αµ(a, p̃, t)− F (a, p̃, t)−G(a, p̃, t))ϕ(a, t)da

(the dependence of H1 and H2 on p is through the function ϕ calculated for a given

(m, p) as above).

Existence and uniqueness of the solution (m̃, p̃) for t ∈ [0, T ] is guaranteed by the

assumptions made on the given functions. Moreover, it is immediate that m̃(t) ≥ 0

and, by virtue of assumption (5.9), we have that p̃ ≥ 0. By summing up Eqs. (5.2)

and (5.3) we see that

m̃(t) + p̃(t) ≤M1 +

∫ t

0

Q(τ)dτ ,

and, since m̃(t), p̃(t) are non-negative functions, we have that they fulfill property

(5.11). Hence F(B) ⊆ B.

Let us now consider two points (m1, p1), (m2, p2) ∈ B. By Eq. (5.4), we find

the two solutions ϕ1(a, t) and ϕ2(a, t). If one writes the equation for the difference

ϕ1 − ϕ2 and uses the Gronwall’s lemma, one can easily find for any t ∈ [0, T ]:∫ 1

0

|ϕ1(a, τ)− ϕ2(a, τ)|da ≤ L̄
∫ t

0

|p1(s)− p2(s)|ds , 0 ≤ τ ≤ t , (5.23)

where L̄ is a positive constant depending only on the Lipschitz constants of the

given functions. By virtue of (5.23), we have from (5.21) and (5.22), by applying

Gronwall’s lemma once again:

|m̃1(t)− m̃2(t)|+ |p̃1(t)− p̃2(t)|

≤ ¯̄L

∫ T

0

(|m1(τ) −m2(τ)| + |p1(τ) − p2(τ)|)dτ , (5.24)
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where ¯̄L > 0 depends on L̄, M1 (see (5.11)) and Q0 (see (5.19)). From (5.24) we

deduce that F is a contractive map in B for some time T1, possibly T1 < T . Hence,

we get a unique solution for t ∈ [0, T1]. With standard arguments, we can see

that the fixed point of the map (solving (5.21) and (5.22) with (m̃, p̃) = (m, p)) is

also solution of (5.2), (5.3). In case of T1 < T , by duplicating the same procedure

starting from t = T1 we can obtain existence and uniqueness of the solution up to

T2 > T1. The same scheme can be iterated in order to find the solution (m, p, ϕ),

t ∈ [0, T ].

We will not deal with the case of streaming (3.9), since the proof of well-

posedeness of the mathematical model is essentially the same: it suffices only to

replace the linear integral operator corresponding to τ in (3.7) with the linear

differential operator (3.8). Notice that a = 0 and a = 1 are two characteristic

curves of the equation, since (3.9) must hold. Hence, the initial datum (5.6) is

sufficient to solve the problem.

6. Summary and Conclusions

We considered a proliferating system of cells and wrote the correct mass balance,

taking into account the three different classes m, p and q as defined in Sec. 2.

Having in mind the application to modelling the growth of tumours, m(t) is

the total mass of the living cells in the region under consideration and their death

originates waste material as well as material which can be used for replication.

Since variation of the relevant quantities w.r.t. position is neglected in this

first approach, external supply of nutrients, withdrawal of catabolic products

etc. and in general any exchange of mass with the surroundings is assumed to

occur simultaneously throughout the region.

On the other hand, a peculiar aspect in tumoral growth is the strong differentia-

tion of cells forming the massm. Thus, we introduced biological activity as a discrete

variable (compartmental models) or as a continuous parameter (Boltzmann-like

approach). The influence of treatment is also taken into account (functions γ).

For all classes of models described well-posedness of the corresponding mathe-

matical problems is proved under mild assumptions on the data and parameters.

Next step in the research will be to take into account spatial dependence of

the quantities: the “natural” extension of the equations discussed in this paper

is the right starting point for the model. However, in this case velocity fields will

have to be introduced for the different classes and the phenomenology of the process

is indeed much more complicated.
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8. E. De Angelis and L. Mesin, On the kinetic (cellular) theory: conceptual frame-
works on modelling the immune response, Math. Models Methods Appl. Sci. 11 (2001)
1633–1654.

9. A. Belleni-Morante and A. C. McBride, Applied Nonlinear Semigroups, Wiley Series
in Mathematical Methods in Practice (Wiley, 1998).

10. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential
Equations (Springer-Verlag, 1983).

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
02

.1
2:

64
9-

66
3.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
A

` 
D

E
G

L
I 

ST
U

D
I 

D
I 

FI
R

E
N

Z
E

 B
IB

L
. D

I 
SC

IE
N

Z
E

 o
n 

02
/0

2/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.


